Elevated oxidative stress (OS) during aging leads to bone loss. OS increases intracellular Ca2+ ([Ca2+]i), resulting in cellular damage and death. We show earlier that Cx43 hemichannels open in response to OS, which serves as a protective mechanism for osteocytes. However, the underlying mechanism is unknown. Here, we found that treatment with H2O2 increased [Ca2+]i in osteocytes with [Ca2+]i being primarily derived from an extracellular Ca2+source. Hemichannel opening induced by OS was inhibited by the depletion of [Ca2+]i with BAPTA-AM, a Ca2+chelator, suggesting that [Ca2+]i influenced the activity of Cx43 hemichannels. Conversely, blockade of hemichannels had no effect on [Ca2+]i. A biotinylation assay showed that cell surface-expressed Cx43 was increased by OS, which could be inhibited by BAPTA-AM, suggesting that [Ca2+]i is necessary for Cx43 migration to the cell surface in response to OS. Together, these data suggest that increased hemichannel activity induced by OS was likely to be caused by elevated [Ca2+]i through increased Cx43 on the cell surface.
作者: 刊期: 2013年第04期
Osteoporotic hip fracture is associated with significant trabecular bone loss, which is typically characterized as low bone density by dual-energy X-ray absorptiometry (DXA) and altered microstructure by micro-computed tomography (μCT). Emerging morphological analysis techniques, e.g. individual trabecula segmentation (ITS), can provide additional insights into changes in plate-like and rod-like trabeculae, two major micro-structural types serving different roles in determining bone strength. Using ITS, we evaluated trabecular microstructure of intertrochanteric bone cores obtained from 23 patients undergoing hip replacement surgery for intertrochanteric fracture and 22 cadaveric controls. Micro-finite element (μFE) analyses were performed to further understand how the abnormalities seen by ITS might translate into effects on bone strength. ITS analyses revealed that, near fracture site, plate-like trabeculae were seriously depleted in fracture patients, but trabecular rod volume was maintained. Besides, decreased plate area and rod length were observed in fracture patients. Fracture patients also showed decreased elastic moduli and shear moduli of trabecular bone. These results provided evidence that in intertrochanteric hip fracture, preferential loss of plate-like trabeculae led to more rod-like microstructure and deteriorated mechanical competence adjacent to the fracture site, which increased our understanding of the biomechanical pathogenesis of hip fracture in osteoporosis.
作者: 刊期: 2013年第04期
Induced pluripotent stem cells (iPSCs) have great potential due to their proliferation and differentiation capability. The objectives of this study were to generate iPSC-derived mesenchymal stem cells (iPSC-MSCs), and investigate iPSC-MSC proliferation and osteogenic differentiation on calcium phosphate cement (CPC) containing biofunctional agents for the first time. Human iPSCs were derived from marrow CD34+ cells which were reprogrammed by a single episomal vector. iPSCs were cultured to form embryoid bodies (EBs), and MSCs migrated out of EBs. Five biofunctional agents were incorporated into CPC:RGD (Arg-Gly-Asp) peptides, fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and platelet concentrate. iPSC-MSCs were seeded on five biofunctionalized CPCs:CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. iPSC-MSCs on biofunctional CPCs had enhanced proliferation, actin fiber expression, osteogenic differentiation and mineralization, compared to control. Cell proliferation was greatly increased on biofunctional CPCs. iPSC-MSCs underwent osteogenic differentiation with increased alkaline phosphatase, Runx2 and collagen-I expressions. Mineral synthesis by iPSC-MSCs on CPC-Platelets was 3-fold that of CPC control. In conclusion, iPSCs showed high potential for bone engineering. iPSC-MSCs on biofunctionalized CPCs had cell proliferation and bone mineralization that were much better than traditional CPC. iPSC-MSC-CPC constructs are promising to promote bone regeneration in craniofacial/orthopedic repairs.
作者: 刊期: 2013年第04期
NF-κBp50/p52 double knockout (dKO) and RANK KO mice have no osteoclasts and develop severe osteopetrosis associated with dwarfism. In contrast, Op/Op mice, which form few osteoclasts, and Src KO mice, which have osteoclasts with defective resorptive function, are osteopetrotic, but they are not dwarfed. Here, we compared the morphologic features of long bones from p50/p52 dKO, RANK KO, Op/Op and Src KO mice to attempt to explain the differences in their long bone lengths. We found that growth plates in p50/p52 dKO and RANK KO mice are significantly thicker than those in WT mice due to a 2-3-fold increase in the hypertrophic chondrocyte zone associated with normal a proliferative chondrocyte zone. This growth plate abnormality disappears when animals become older, but their dwarfism persists. Op/Op or Src KO mice have relatively normal growth plate morphology. In-situ hybridization study of long bones from p50/p52 dKO mice showed marked thickening of the growth plate region containing type 10 collagen-expressing chondrocytes. Treatment of micro-mass chondrocyte cultures with RANKL did not affect expression levels of type 2 collagen and Sox9, markers for proliferative chondrocytes, but RANKL reduced the number of type 10 collagen-expressing hypertrophic chondrocytes. Thus, RANK/NF-κB signaling plays a regulatory role in post-natal endochondral ossification that maintains hypertrophic conversion and prevents dwarfism in normal mice.
作者: 刊期: 2013年第04期
Recent improvements in the speed and accuracy of DNA sequencing, together with increasingly sophisti-cated mathematical approaches for annotating gene networks, have revolutionized the field of human genetics and made these once time consuming approaches assessable to most investigators. In the field of bone research, a particularly active area of gene discovery has occurred in patients with rare bone disorders such as osteogenesis imperfecta (OI) that are caused by mutations in single genes. In this perspective, we highlight some of these technological advances and describe how they have been used to identify the genetic determinants underlying two previously unexplained cases of OI. The widespread availability of advanced methods for DNA sequencing and bioinformatics analysis can be expected to greatly facilitate identification of novel gene networks that normally function to control bone formation and maintenance.
作者: 刊期: 2013年第04期
A number of effective therapies for the treatment of osteoporosis have become available in recent years. However, uncertainty exists regarding their long-term use and effectiveness. Bisphosphonate treatment, unlike hormone replacement, denosumab or teriparatide, is associated with benefits extended even after treatment discontinuation. The extended benefits are most apparent for alendronate (ALN) and zoledronate (ZOL). A drug holiday might be considered in patients at low-moderate risk and who have been fully compliant with treatment, and who have had a response to treatment. In patients at low-moderate risk of fractures the decision to consider a drug holiday should be balanced also with the safety profile of each treatment.
作者: 刊期: 2013年第04期
Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anato-my, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups.
作者: 刊期: 2013年第04期
作者: 刊期: 2014年第03期
作者: 刊期: 2014年第03期
作者: 刊期: 2014年第03期
作者: 刊期: 2014年第03期
作者: 刊期: 2014年第03期
Cone-beam computed tomography (CBCT) has been recently used to analyse trabecular bone structure around dental implants. To validate the use of CBCT for three-dimensional (3D) peri-implant trabecular bone morphometry by comparing it to two-dimensional (2D) histology, 36 alveolar bone samples (with implants n527 vs. without implants n59) from six mongrel dogs, were scanned ex vivo using a high-resolution (80 mm) CBCT. After scanning, all samples were decalcified and then sectioned into thin histological sections (,6 mm) to obtain high contrast 2D images. By using CTAn imaging software, bone morphometric parameters including trabecular number (Tb.N), thickness (Tb.Th), separation (Tb.Sp) and bone volume fraction (BV/TV) were examined on both CBCT and corresponding histological images. Higher Tb.Th and Tb.Sp, lower BV/TV and Tb.N were found on CBCT images (P,0.001). Both measurements on the peri-implant trabecular bone structure showed moderate to high correlation (r50.65-0.85). The Bland-Altman plots showed strongest agreement for Tb.Th followed by Tb.Sp, Tb.N and BV/TV, regardless of the presence of implants. The current findings support the assumption that peri-implant trabecular bone structures based on high-resolution CBCT measurements are representative for the underlying histological bone characteristics, indicating a potential clinical diagnostic use of CBCT-based peri-implant bone morphometric characterisation.
作者: 刊期: 2014年第02期
Insufficient insulin production or action in diabetic states is associated with growth retardation and impaired bone healing, while the underling mechanisms are unknown. In this study, we sought to define the role of insulin signaling in the growth plate. Insulin treatment of embryonic metatarsal bones from wild-type mice increased chondrocyte proliferation. Mice lacking insulin receptor (IR) selectively in chondrocytes (CartIR2/2) had no discernable differences in total femoral length compared to control littermates. However, CartIR2/2 mice exhibited an increase in chondrocyte numbers in the growth plate than that of the controls. Chondrocytes lacking IR had elevated insulin-like growth factor (IGF)-1R mRNA and protein levels. Subsequently, IGF-1 induced phosphorylation of Akt and ERK was enhanced, while this action was eliminated when the cells were treated with IGF-1R inhibitor Picropodophyllin. Deletion of the IR impaired chondrogenic differentiation, and the effect could not be restored by treatment of insulin, but partially rescued by IGF-1 treatment. Intriguingly, the size of hypertrophic chondrocytes was smaller in CartIR2/2 mice when compared with that of the control littermates, which was associated with upregulation of tuberous sclerosis complex 2 (TSC2). These results suggest that deletion of the IR in chondrocytes sensitizes IGF-1R signaling and action, IR and IGF-1R coordinate to regulate the proliferation, differentiation and hypertrophy of growth plate chondrocytes.
作者: 刊期: 2014年第02期
Indian hedgehog (Ihh) is an essential signal that regulates endochondral bone development. We have previously shown that Wnt7b promotes osteoblast differentiation during mouse embryogenesis, and that its expression in the perichondrium is dependent on Ihh signaling. To test the hypothesis that Wnt7b may mediate some aspects of Ihh function during endochondral bone development, we activated Wnt7b expression from the R26-Wnt7b allele with Col2-Cre in the Ihh2/2 mouse. Artificial expression of Wnt7b rescued vascularization of the hypertrophic cartilage in the Ihh2/2 mouse, but failed to restore orthotopic osteoblast differentiation in the perichondrium. Similarly, Wnt7b did not recover Ihh-dependent perichondral bone formation in the Ihh2/2;Gli32/2 embryo. Interestingly, Wnt7b induced bone formation at the diaphyseal region of long bones in the absence of Ihh, possibly due to increased vascularization in the area. Thus, Ihh-dependent expression of Wnt7b in the perichondrium may contribute to vascularization of the hypertrophic cartilage during endochondral bone development.
作者: 刊期: 2014年第02期
Heterogeneous nuclear ribonucleoprotein (hnRNP) C plays a key role in RNA processing but also exerts a dominant negative effect on responses to 1,25-dihydroxyvitamin D (1,25(OH)2D) by functioning as a vitamin D response element-binding protein (VDRE-BP). hnRNPC acts a tetramer of hnRNPC1 (huC1) and hnRNPC2 (huC2), and organization of these subunits is critical to in vivo nucleic acid-binding. Overexpression of either huC1 or huC2 in human osteoblasts is sufficient to confer VDRE-BP suppression of 1,25(OH)2D-mediated transcription. However, huC1 or huC2 alone did not suppress 1,25(OH)2D-induced transcription in mouse osteoblastic cells. By contrast, overexpression of huC1 and huC2 in combination or transfection with a bone-specific polycistronic vector using a‘‘self-cleaving’’ 2A peptide to co-express huC1/C2 suppressed 1,25D-mediated induction of osteoblast target gene expression. Structural diversity of hnRNPC between human/NWPs and mouse/rat/rabbit/dog was investigated by analysis of sequence variations within the hnRNP CLZ domain. The predicted loss of distal helical function in hnRNPC from lower species provides an explanation for the altered interaction between huC1/C2 and their mouse counterparts. These data provide new evidence of a role for hnRNPC1/C2 in 1,25(OH)2D-driven gene expression, and further suggest that species-specific tetramerization is a crucial determinant of its actions as a regulator of VDR-directed transactivation.
作者: 刊期: 2014年第02期
Locking plate fixation is being widely applied for fixation of forearm fractures and has many potential advantages, such as fixed angle fixation and improved construct stability, especially in osteoporotic bone. Biomechanical data comparing locking devices to commonly used Low Contact Dynamic Compression (LCDCP) plates for the fixation of forearm fractures has been lacking. The purpose of this study was to compare the fixation stability of a 3.5-mm unicortical locked plate with bicortical non-locked LCDCP plates. Six matched pairs of fresh frozen cadaveric forearms were randomly assigned to unicortical locked and bicortical unlocked groups. Non-destructive four-point bending and torsional test was performed on the ulna and radius separately, using a servohydraulic testing system to obtain construct stiffness of the intact specimens and specimens after osteotomy and plating. The specimens were then loaded to failure to test the fixation strength. The locked unicortical fixation showed significantly higher bending stiffness than the unlocked bicortical fixation, but with significantly lower stiffness and strength in torsion. Fixation strength was comparable between the two groups under bending, but significantly greater in the bicortical non-locked group under torsion. Findings from this study suggest that postoperative rehabilitation protocols may need modification to limit torsional loading in the early stage when using locked unicortical fixation. The study also points out the potential advantage of a hybrid fixation that combines locked unicortical and unlocked bicortical screws.
作者: 刊期: 2014年第02期
Osteoporotic fractures are a major public health problem worldwide, but incidence varies greatly across racial groups and geographic regions. Recent work suggests that the incidence of osteoporotic fracture is rising among Asian populations. Studies comparing areal bone mineral density and fracture across races generally indicate lower bone mineral density in Asian individuals including the Chinese, but this does not reflect their relatively low risk of non-vertebral fractures. In contrast, the Chinese have relatively high vertebral fracture rates similar to that of Caucasians. The paradoxically low risk for some types of fractures among the Chinese despite their low areal bone mineral density has been elucidated in part by recent advances in skeletal imaging. New techniques for assessing bone quality non-invasively demonstrate that the Chinese compensate for smaller bone size by differences in hip geometry and microstructural skeletal organization. Studies evaluating factors influencing racial differences in bone remodeling, as well as bone acquisition and loss, may further elucidate racial variation in bone microstructure. Advances in understanding the microstructure of the Chinese skeleton have not only helped to explain the epidemiology of fracture in the Chinese, but may also provide insight into the epidemiology of fracture in other races as well.
作者: 刊期: 2014年第02期
Osteoarthritis (OA) is a common joint degenerative disease affecting the whole joint structure, including articular cartilage, subchondral bone and synovial tissue. Although extensive work has been done in recent years to explore the molecular mechanism underlying this disease, the pathogenesis of OA is still poorly understood and currently, there is no effective disease-modifying treatment for OA. Recently, both in vitro and in vivo studies suggest that confirmed (TGF-b)/SMAD pathway plays a critical role during OA development. This short review will focus on the function and signaling mechanisms of TGF-b/SMAD pathway in articular chondrocytes, mesenchymal progenitor cells of subchondral bone and synovial lining cells during OA development.
作者: 刊期: 2014年第02期
作者: 刊期: 2014年第02期
Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling pathways crosstalk with each other in producing a skeletal response to mechanical loading. To test this, at 5 weeks of age, partial ovariectomy (pOVX) or a sham operation was performed on heterozygous IGF-I conditional knockout (H IGF-I KO) and control mice generated using a Cre-loxP approach. At 10 weeks of age, a 10 N axial load was applied on the right tibia of these mice for a period of 2 weeks and the left tibia was used as an internal non-non-loaded control. At the cortical site, partial estrogen loss reduced total volumetric bone mineral density (BMD) by 5%in control pOVX mice (P50.05, one-way ANOVA), but not in the H IGF-I KO pOVX mice. At the trabecular site, bone volume/total volume (BV/TV) was reduced by 5%-6%in both control pOVX (P,0.05) and H IGF-I KO pOVX (P50.05) mice. Two weeks of mechanical loading caused a 7%-8%and an 11%-13%(P,0.05 vs. non-loaded bones) increase in cortical BMD and cortical thickness (Ct.Th), respectively, in the control sham, control pOVX and H IGF-I KO sham groups. By contrast, the magnitude of cortical BMD (4%, P50.13) and Ct.Th (6%, P,0.05) responses were reduced by 50%in the H IGF-I KO pOVX mice compared to the other three groups. The interaction between genotype and estrogen deficiency on the mechanical loading-induced cortical bone response was significant (P,0.05) by two-way ANOVA. Two weeks of axial loading caused similar increases in trabecular BV/TV (13%-17%) and thickness (17%-23%) in all four groups of mice. In conclusion, partial loss of both estrogen and IGF-I significantly reduced cortical but not the trabecular bone response to mechanical loading, providing in vivo evidence of the above crosstalk in mediating the bone response to loading.
作者: 刊期: 2014年第01期
Lipoprotein receptor-related protein 6 (LRP6) plays a critical role in skeletal development and homeostasis in adults. However, the role of LRP6 in mesenchymal stem cells (MSCs), skeletal stem cells that give rise to osteoblastic lineage, is unknown. In this study, we generated mice lacking LRP6 expression specifically in nestin1 MSCs by crossing nestin-Cre mice with LRP6flox mice and investigated the functional changes of bone marrow MSCs and skeletal alterations. Mice with LRP6 deletion in nestin1 cells demonstrated reductions in body weight and body length at 1 and 3 months of age. Bone architecture measured by microCT (mCT) showed a significant reduction in bone mass in both trabecular and cortical bone of homozygous and heterozygous LRP6 mutant mice. A dramatic reduction in the numbers of osteoblasts but much less significant reduction in the numbers of osteoclasts was observed in the mutant mice. Osterix1 osteoprogenitors and osteocalcin1 osteoblasts significantly reduced at the secondary spongiosa area, but only moderately decreased at the primary spongiosa area in mutant mice. Bone marrow MSCs from the mutant mice showed decreased colony forming, cell viability and cell proliferation. Thus, LRP6 in bone marrow MSCs is essential for their survival and proliferation, and therefore, is a key positive regulator for bone formation during skeletal growth and remodeling.
作者: 刊期: 2014年第01期